ULTRASONIC METHOD FOR DETERMINING THE THERMAL
DIFFUSIVITY OF MATERIALS

V. M. Baranov, E. M. Kudryavtsev, UDC 536.2.023
and A. N, Samokhvalov

A method is proposed for determining the thermal diffusivity of materials by recording the
amplitude variation of resonance vibrations of a disk-shaped specimen of the investigated
material subjected to heat flux,

We have previously [1, 2] discussed a method for determining the thermal diffusivity of materials by
means of ultrasound. Tltrasonic vibrations are excited in a specimen in the shape of a thin circular plate at
a frequency close to flexural resonance. Then one of the flat surfaces of the specimen is subjected to a heat
pulse from a pulsed gas-discharge tube. The variation of the temperature field in the specimen and the con-
comitant variation of the elastic modulus cause a shift of the specimen resonance frequency, changing the am-
plitude of its vibrations. The thermal diffusivity of the specimen material is calculated from the rise time of
the new amplitude value, and its heat capacity is determined from the amplitude increment. The main ad-
vantages of the method are speed, the use of small specimens, and the possibility of determining simulta-
neously a whole set of thermophysical and physicomechanical properties, including the thermal diffusivity,
heat capacity, elastic modulus, Poisson ratio, and internal friction.

The given method is marked by inherent restrictions associated with the need to record very fast pro-
cesses attributable totemperature equalization in the thickness of the specimen. It has been shown [1] that the
time constant characterizing the amplitude variation is 7T=h2/41r2a° Foraspecimenhaving thickness of 1 or
2 mm and made from a material with a high thermal conductivity the value of 7 ranges from fractions of a
millisecond to a few milliseconds, creating experimental difficulties in connection with the generation of high-
intensity pulsed heat fluxes.

Accordingly, we have developed a version of the ultrasonic method for determining the thermal diffusiv-
ity of thin disks whereby it is possible ¢ increase the time constant of the temperature-equalization process
in the specimen through the use of radiosymmetrical heating by a heat flux that varies in the radial direction.
Due to the large thermal-equilibration time in this casc it is possible to use ordinary resistance heaters, which
have a comparatively slow response.

We investigate the variation of the resonance frequency of a disk specimen subjected to the action of a
radiosymmetrical thermal perturbation (Fig. 1). The frequency shift in the given case is caused by two pro-
cesses:

1) variation of the elastic modulus of the tested material with increasing temperature;
2) inception of thermal stresses in the sample due to heating nonuniformity.

If the heat flux is constant on the heating surface and its time variation is described by the step function
q(r, t) =gl (t)1(b~r) (Fig. 1}, then with neglect of heat transfer away from the specimen surface the tempera-
ture field in the specimen is described by the expression [3]
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Ak =h for k=0 and Ay =h/2 for k+ 0; J;is the Bessel function of order zero; vy is the root of the equation
J(vn) =0; and ¢, is the specific heat of the specimen material. The prime on the summation sign over k and n
signifies that the term with k=n=0 is to be omitted.

The influence of the thermal stresses arising inthe specimen forthetemperature distribution (1) is esti-
mated as follows. Inasmuch as the specimen surface is free of stresses and the specimen has a small thick-
ness, the components ¢ 55, 0 rz, Oz of the stress tensor are small and can be neglected. In other words, a
plane stressed state exists in the specimen. The other components of the stress tensor are described by the
expressions [4]:
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in which E, is the Young's modulus at the test temperature.

The equation for the free vibrations of the specimen with additional stresses present in it has the fol-
lowing form in cylindrical coordinates [5]:

- W o, o g, dw do, Oow )
Doy e B 4 Sy 0 rr Lo 2
DX ("" o TR et T Tar T ar o ) TPk (3)
where w is the transverse displacement; w is the cyclic frequency of the vibrations; A is the Laplace operator;
+h/2
and D is the flexural stiffness of the plate, calculated according to the formula D = g‘ T #’dz.  The quan-
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tities Err and ¢ @@ are interpreted as the stress tensor components integrated with respect to the z coordinate.
The equation for the free vibrations of a plate épecimen prior to the action of heat flux has the form
DAt = phafw'®). (4

Here the index 0 refers to the values of the particle displacements w, natural frequencies w, and stiffness D
before thermal perturbation, The solutions of Eq. (4) are well known [5, 6].
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Fig. 1. Diagram of thermal
treatment of specimen.
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Fig. 2. Variation of the specimen vibration parameters
due to thermal perturbation of the specimen. 1) §{A=
Bzexp[—t/'rR]; a) variation of resonance curve; b) ampli-
tude variation 6 A, arbitrary units.

Fig. 3. Block diagram of instrumentation used to measure
the thermal diffusivity of materials by means of ultra-
sound.

TABLE 1. Results of Control Measurements of Thermal Diffusivity
by the Ultrasonic (US) Method

Specimen | i e o
dlmen mml I Thermal diffusivity
l ) measured by |
3 \US method |
Material | B e, |— 08 .
& isec 13 = )
3 2 o0 < = | S g
- E TEUREIR 3}
“E |18 E- 5L .8 12882 3
= L o 10 e = | j=Etl) 2 o
5 | = ETEIEE |2TE Eka
. i : j ! : _
Armco iron 29,0 | 3,3 | 47,4 0,63622,5 ( 8,2 , 21,9 [9] -2,7
Steel Kh18N9T 19,9 2,9 '61,212,12, 3,217 85 | 3,64 (9] ' —11,8
Bismuth (99.995% ; ; ' : : ‘
pure) 23,4 4,0 l 20,2, 1,43 6,520 8,4 ; 6,42[9 | 1,6
Aluminum (99,99% i ! ! ; : '
pure) 135,21 4,0 :28,40,21597,6 | 3,8 88,5[10] |--10,3
Titanium alloy 20,1 2,4 | 49,6 ;2,310 2,98 6,8 ; 3,16[10] | ~5,7
VT-8 : 20,1; 3,6 59,1 2, 37 | | 2,92 35  3,26[10] | —7.6
We write Egs. (3) and (4) in the operator form
Ly - Lyw = hw, (3a)
Lw'® =20, (42)

Here L, =A% and A () =phw? /D, is the eigenvalue of the unperturbed equation. The perturbation operator
Ly, as implied by (3) and (4), is written in the form :
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where bp =dE/d@ is the temperature coefficient of the elastic modulus.

Numerical estimates for the characteristic quantities E, 6, aT, h,and r; show that the second term in
the equation is much smaller than the first, i.e., iiw/ iow«l, Consequently, the thermal perturbation may be
regapded as small. Now, assuming that the solutions of Eq. (4) are known, we invoke linear perturbation meth-
ods to solve Eq. (3). In accordance with the general postulates of linear perturbation theory {7] the variation
of the eigenvalue due to the perturbation has the form
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where V is the volume of the system. Then for the shift of the m~th natural flexural frequency of the sample,
where m=0,1, ...,we obtain the expression
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The quantities Ay, and Myy do not depend on the time.

The first sum in expression (5) describes the contribution of thermal stresses to the variation of the
specimen natural frequencies, and the second sum describes the contribution of the change in flexural stiffness
of the disk. Tt is evident from (5) that for a radially nonuniform heat flux the time variation of the resonance
frequency can be represented by a sum of exponentials with different time constants. Some of the time con~
stants characterize the equalization of the temperature field in the specimen thickness, while others describe
its radial equalization. The largest "thickness" time constant is 7 =h?/47%a, and the largest "radial" time
constant is TR =ri/v}a, where v;=3.83 is the first root of the equation Jy(vy) =0. The ratio TR/Tp =(1.64
ry/h)?>»1.

It is evident from Eq. (5) that the summed terms decay rapidly with increasing indices k and n, hence the
equation can be limited to the first few terms of the sums. Retaining terms with n=1 and k=0 in {5}, we obtain
the relation
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in which g and ¢ are constants,

The perturbation-induced variation of the natural frequency can be recorded on the basis of the amplitude
variation of the specimen vibrations near the given frequency (Fig. 2a). If curve 1 is the resonance variation
before thermal perturbation and fy is the corresponding resonance frequency, then at a driving frequency fi
the vibration amplitude is egual to A;. When the resonance curve changes to the form of curve 2 under the in-
fluence of thermal perturbation, the vibration amplitude assumes the value A,, When the amplitude variations
take place on the linear part of the slope of the resonance curve, we have
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A, — A = 8A = (AA/A} ) 8, .
Therefore,
0A == Bit + B, (1 —exp{—1/1,}), (6)

where By and B, are time-independent multipliers. Now the time variation of the amplitude has the form shown
in Fig. 2b. It follows from Eq. (6) and Fig. 2b that the difference between the experimental curve (solid) and
its asymptotic representation extended to zero (dashed) is described by the exponential function

8,4 = Byexp {—t/1.},

from which, taking the logarithm, we can determine the time constant 7R and the thermal diffusivity of the ma-
terial according to the slope of the resulting straight line.

A Dblock diagram of the instrumentation used to implement the method is given in Fig. 3. The high-fre-
quency oscillator 1 drives the piezoelectric emitter 2, which is attached to the rod-type acoustic line 3, The
ultrasonic vibrations generated by the piezoelectric emitter propagate along the acoustic line and excite vibra-
tions in the sample 4, which are recorded through the acoustic line 8 by the piezoelectric receiving transducer
9. Thesignals from the latter are amplified by the amplifier 10, and after detection by the detector 11 the envelope of
the high-frequency signal is recorded on the screen of the electronic oscilloscope with memory 12, Thethermal per-
turbation is created by the motion picture projector lamp 5 through the iris 7, and a step-change of the heat
flux is realized by means of the shutter 6. A high-frequency oscillator of the type GZ-7A and an amplifier of
the type USh-10 are used. The transducers are TsTS-~19 lead zirconate—titanate piezoelectric ceramics with
a diameter of 6 mm and thickness of 3 mm. The device used to attach the specimen to the acoustic lines and
transducers has a construction identical to that described in [8]. The projector lamp has a power rating of
500 W,

The results of control measurements performed at room temperature are summarized in Table 1. The
table indicates agreement of our results with handbook data, allowing for measurement errors. The rms scat-
ter of the results of individual measurements is 4 to 8%. We note that the measurement results are not affected
by the uniformity of the heat flux, because the latter determines only the values of the individual components
in expression (6).

Thus, the given method can be used to measure the thermal diffusivity of materials. The possibility of
determining, in addition to the thermal diffusivity, the values of the elastic constants by application of the pro-
cedure described in [8] puts the given method in the class of fast and efficient techniques for assessing the
properties of new materials. The asset that the ultrasonic transducers and thermal perturbation source can
be placed at a good distance from the measured object ensures the capability of conducting measurements in
radioactive radiation fields at high temperatures, Calculations show that heat-transfer corrections can be
disregarded up to values of the Biot number Bi= 0.5, which corresponds to temperatures up to 2000-2500°K
for specimens 10 to 15 mm in diameter,

NOTATION

TR, TT, time constants characterizing the temperature variation in the specimen; a, thermal diffusivity;
h, r,, thickness and radius of specimen; r, z, instantaneous coordinates; t, time; q, heat flux; b/z, radius of
heated section of specimen surface; ®, temperature variation of specimen due to heat flux; p, density of speci-
men; ¢, Poisson ratio; E, Young's modulus; 0 ,p, Trgs Opgp> components of thermal stress tensor in specimen;
o, thermal coefficient of linear expansion; D, flexural stiffness; w, vibrational displacement; bg, tempera-
ture coefficient of elastic modulus; «(? =27Tf(0), natural cyclic frequency of specimen vibrations; § A, recorded
variation of vibration amplitude; Bi, Biot number.
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EXPERIMENTAL STUDY OF THE THERMAL
CONDUCTIVITY OF WEAKLY ABSORBING LIQUIDS
IN LAYERS TRANSPARENT TO INFRARED RADIATION

B, I. Il'in, V., F. Salokhin, UDC 536.22
and G. G. Spirin

The thermal conductivities of a number of organic liquids are determined by a transient method
under irregular thermal conditions,

A great deal of experimental work has been carried out in the last few years in connection with the in-
fluence of radiation on thermal-conductivity measurements in semitransparent media, a category including
the majority of liquids. Measurements have most frequently been based on the most widely accepted steady-
state methods (plane layers, coaxial cylinders, heated filaments). Theoretical analysis [1-5] and a consider-
able number of experimental investigations [3, 5-8] show that the influence of radiation expresses itself as a
dependence of the thermal conductivity on the thickness of the layer used for the measurements. The molecu-
lar thermal conductivity is approximately obtained on extrapolating this relationship to zero layer thickness.

There are certain possible ways of eliminating the effect of radiation on the results of thermal-conduc-
tivity measurements; these include the so-called transient methods, especially those involving irregular ther~
mal conditions. These methods are most frequently realized by the transient heating of a metal filament im-
mersed in the liquid, with simultaneous recording of its temperature. The use of very thin filaments with a
low intrinsic heat capacity enables the thermal conductivities to be measured quite rapidly, so that the region
(layer) over which the measurement is carried out may be relatively small. For a broad class of weakly ab-
sorbing liquids, the thickness of this layer may be smaller than the mean free path of the photons character-
izing infrared radiation. The radiative mechanism of heat transfer may then be almost entirely neglected, and
the value of the thermal conductivity obtained under these specific conditions may be identified with the molecu-
lar thermal conductivity. The influence of radiative heat transfer then only appears as a loss of some of the
heat from the surface of the heater and from the interior of the layer into which the transient temperature field
penetrates. The total extent of these losses is small in the case of brief measurements and need not be taken
into account. ’

The criterion of "transparency” as regards thermal radiation may be written in the form
1>, (1)
where
- / .
I .—_j L g, /& M o = ahy)
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In order to estimate I it is sufficient to limit consideration to monochromatic radiation of frequency v,
corresponding to the maximum of the Planck distribution function at the particular temperature. In this case
] =1/k,,0, and inequality (1) may be expressed in the form
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